

75W isolated DC-DC converter
Wide input voltage and regulated single output

CE Patent Protection RoHS

FEATURES

- Ultra-wide 4:1 input voltage range
- High efficiency up to 93%
- I/O isolation test voltage: 2250VDC
- Input under-voltage protection, output short circuit, over-current, over-voltage, over-temperature protection
- Operating ambient temperature range: -40°C ~ +85°C
- Five-sided metal shielded package
- EN62368 approved
- Meet UL62368, IEC62368, EN50155 standards
- Industry standard 1/4-Brick package and pin-out

URF48_QB-75W(F/H)R3 series of isolated 75W DC-DC converter products with a 4:1 input voltage range. They feature efficiencies of up to 93%, 2250VDC input to output isolation, operating ambient temperature of -40°C to +85°C, input under-voltage, output over-voltage, short circuit, over-temperature and over-current protection. The products meet CLASS B of CISPR32/EN55032 EMI standards by adding the recommended external components, and they are widely used in applications such as battery powered systems, industrial controls, electricity, instrumentation, railway, communication and intelligent robotics.

Selection Guide

Certification	Part No. ^①	Input Voltage (VDC)		Output		Full Load Efficiency (%) Min./Typ.	Capacitive Load (μF) Max.
		Nominal (Range)	Max. ^②	Voltage (VDC)	Current (A) Max.		
CE	URF4805QB-75W(F/H) R3	48 (18-75)	80	5	15	89/91	6000
	URF4812QB-75W(F/H) R3			12	6.25	90/92	2000
	URF4815QB-75W(F/H) R3			15	5	91/93	2000
	URF4824QB-75W(F/H) R3			24	3.13	90/92	1000
	URF4848QB-75W(F/H) R3			48	1.56	90/92	470

Note:

①Use "F" suffix is for added aluminum baseplate and "H" suffix for heat sink mounting. We recommend to choose modules with a heat sink for enhanced heat dissipation and applications with extreme temperature requirements;

②Exceeding the maximum input voltage may cause permanent damage.

Input Specifications

Item	Operating Conditions	Min.	Typ.	Max.	Unit
Input Current (full load/no-load)	Nominal input voltage	--	1698/50	1756/80	mA
Reflected Ripple Current	Nominal input voltage	--	30	--	
Surge Voltage (1sec. max.)		-0.7	--	90	
Start-up Voltage		--	--	18	VDC
Input Under-voltage Protection	5VDC, 15VDC output	16	16.5	--	
	Others	15	15.5	--	
Input Filter		PI filter			
Ctrl*	Module on	Ctrl pin open or pulled high (3.5-12VDC)			
	Module off	Ctrl pin pulled low to GND (0-1.2VDC)			

Ctrl*	Input current when off	--	2	10	mA
Hot Plug			Unavailable		

Note: *The Ctrl pin voltage is referenced to input GND.

Output Specifications

Item	Operating Conditions		Min.	Typ.	Max.	Unit
Voltage Accuracy	0%-100% load		--	±1	±3	%
Linear Regulation	Input voltage variation from low to high at full load		--	±0.2	±0.5	
Load Regulation	0%-100% load		--	±0.5	±0.75	μs
Transient Recovery Time	25% load step change		--	200	500	
Transient Response Deviation	25% load step change	5VDC output	--	±3	±7.5	%
		Others	--	±3	±5	
Temperature Coefficient	Full load		--	--	±0.03	%/°C
Ripple & Noise*	20MHz bandwidth	12VDC, 15VDC output	--	100	200	mVp-p
		Others	--	150	250	
Over-voltage Protection			110	130	160	%Vo
Over-current Protection	Input voltage range		110	140	190	%Io
Short-circuit Protection			Hiccup, continuous, self-recovery			

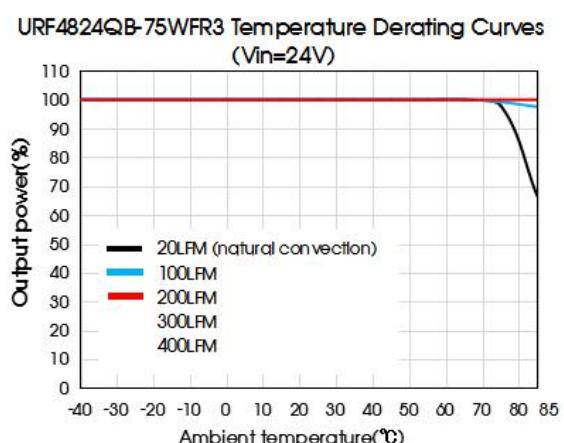
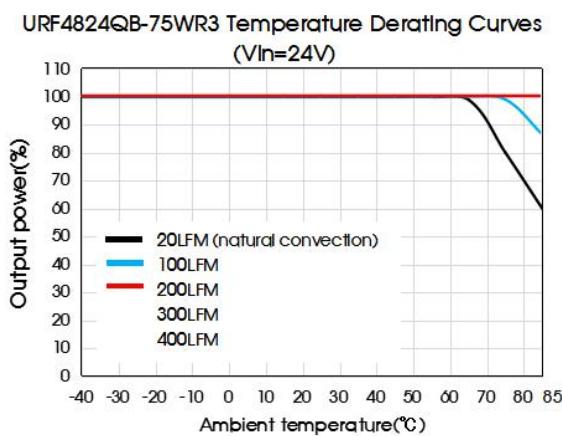
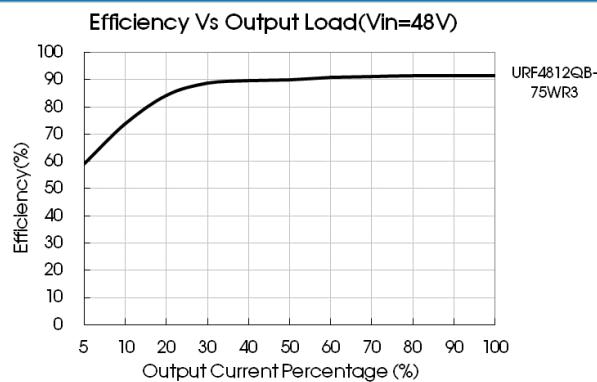
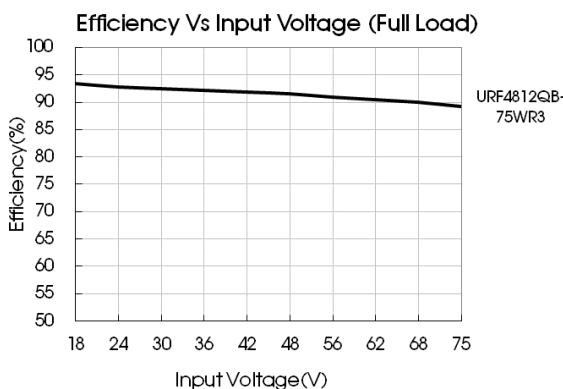
Note: * The "parallel cable" method is used for ripple and noise test, please see *DC-DC Converter Application Notes* for specific operation.

General Specifications

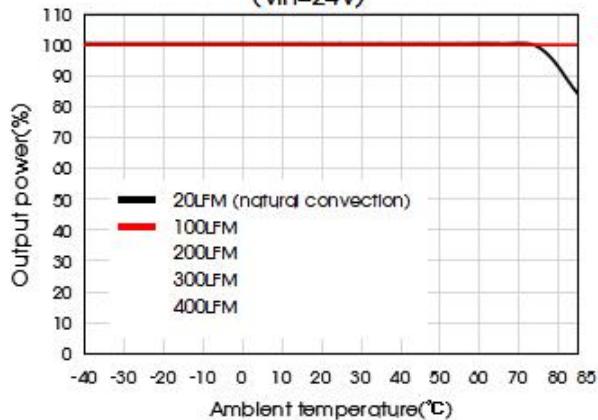
Item	Operating Conditions		Min.	Typ.	Max.	Unit	
Isolation	Input-output	Electric Strength Test for 1 minute with a leakage current of 5mA max.	2250	--	--	VDC	
	Input-case		1500	--	--		
	Output-case		500	--	--		
Insulation Resistance	Input-output resistance at 500VDC		100	--	--	MΩ	
Isolation Capacitance	Input-output capacitance at 100KHz/0.1V		--	2200	--	pF	
Trim Range*			95	--	110	%Vo	
Remote Sense Compensation			--	--	105		
Operating Temperature			-40	--	+85	°C	
Storage Temperature			-55	--	+125		
Over-temperature Protection	Max. case temperature		--	115	120		
Pin Soldering Resistance Temperature	Wave-soldering, 10 seconds Soldering spot is 1.5mm away from case for 10 seconds		--	--	260		
Storage Humidity	Non-condensing		5	--	95	%RH	
Vibration	IEC/EN61373 - Category 1, Grade B						
Switching Frequency	PWM mode		--	250	--	KHz	
MTBF	MIL-HDBK-217F@25°C		500	--	--	K hours	

Note: *For URF4805QB-75W(F/H)R3 and URF4815QB-75W(F/H)R3, the Trim function satisfies the output up to 10% or the Sense function satisfies the output up to 5%, Vin needs to be higher than 20VDC.

Mechanical Specifications





Case Material	Aluminum alloy case; Black plastic bottom, flame-retardant and heat-resistant (UL94 V-0)		
Dimensions	URF48xxQB-75WR3	61.8 x 40.2 x 12.7 mm	
	URF48xxQB-75WFR3	62.0 x 56.0 x 14.6 mm	
	URF48xxQB-75WHR3	61.8 x 40.2 x 27.7 mm	
Weight	URF48xxQB-75WR3	90.0g(Typ.)	
	URF48xxQB-75WFR3	110.0g(Typ.)	

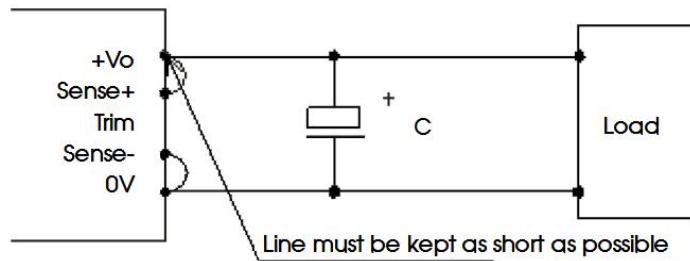
Weight	URF48xxQB-75WHR3	121.0g(Typ.)
Cooling method	Natural convection (20FLM)	


Electromagnetic Compatibility (EMC)

Emissions	CE	CISPR32/EN55032	CLASS A and CLASS B (see Fig. 3 for recommended circuit)	
	RE	CISPR32/EN55032	CLASS A and CLASS B (see Fig. 3 for recommended circuit)	
Immunity	ESD	IEC/EN61000-4-2, EN50121-3-2	Contact $\pm 6\text{KV}$ Air $\pm 8\text{KV}$	perf.Criteria B
	RS	IEC/EN61000-4-3, EN50121-3-2	10V/m	perf.Criteria A
	EFT	IEC/EN61000-4-4, EN50121-3-2	$\pm 2\text{KV}$ (see Fig. 2 for recommended circuit)	perf.Criteria A
	Surge	EN50121-3-2	differential mode $\pm 1\text{KV}$, 1.2/50us, source impedance 42Ω (see Fig.2 for recommended circuit)	perf.Criteria B
	CS	IEC/EN61000-4-6, EN50121-3-2	10 Vr.m.s	perf.Criteria A

Typical Performance Curves

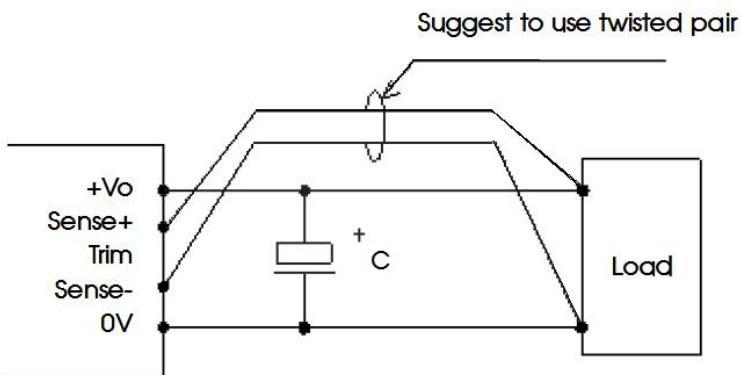
URF4824QB-75WHR3 Temperature Derating Curves
(Vin=24V)



Notes:

(1) Product application thermal design should be referred to the recommended PCB layout and recommended heat dissipation structure, please see DC-DC Converter Application Notes for specific operation.

Remote Sense Application


1. Remote Sense Connection if not used

(1) If the sense function is not used for remote regulation the user must connect the +Sense to + Vo and -Sense to 0V at the DC-DC converter pins and will compensate for voltage drop across pins only.

(2) The connections between Sense lines and their respective power lines must be kept as short as possible, otherwise they may be picking up noise, interference and/or causing unstable operation of the power module.

2. Remote Sense Connection used for Compensation

(1) Using remote sense with long wires may cause unstable output, please contact technical support if long wires must be used.

(2) PCB-tracks or cables/wires for Remote Sense must be kept as short as possible. Twisted pair or shielded wires are suggested for remote compensation and must be kept as short as possible.

(3) We recommend using adequate cross section for PCB-track layout and/or cables to connect the power supply module to the load in order to keep the voltage drop below 0.3V and to make sure the power supply's output voltage remains within the specified range.

(4) Note that large wire impedance may cause oscillation of the output voltage and/or increased ripple. Consult technical support or factory for further advice of sense operation.

Design Reference

1. Typical application

(1) We recommended using the recommended circuit shown in Fig.1 during product testing and application, otherwise please ensure that at least a $220\mu\text{F}$ electrolytic capacitors is connected at the input in order to ensure adequate voltage surge suppression and protection.

(2) We recommended increasing the value of C_{in} and pay attention to the unstable input voltage if the product input side is paralleled with motor drive circuit and/or larger energy transient circuits, to ensure the stability of input terminal and avoid repeatedly start-up problems due to input voltage lower than under-voltage protection point.

(3) We recommended increasing the output capacitance with limited to the capacitive load specification and/or increasing the voltage clamping circuit(such as TVS) if the output terminal is inductive device such as relay or a motor, to ensure adequate voltage surge suppression and protection.

(4) Input and/or output ripple can be further reduced by appropriately increasing the input & output capacitor values C_{in} and C_{out} and/or by selecting capacitors with a low ESR (equivalent series resistance). Also make sure that the capacitance is not exceeding the specified max. capacitive load value of the product.

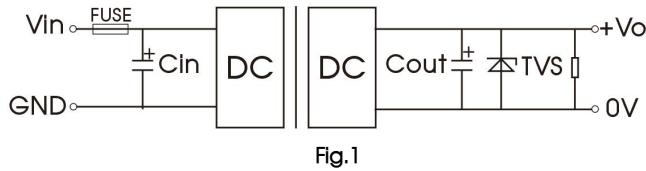
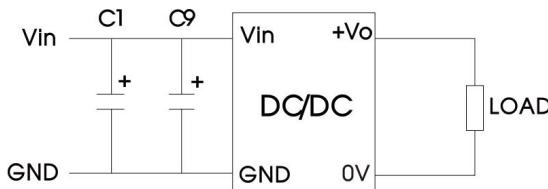


Fig.1


Vout(VDC)	Fuse	C_{in}^*	C_{out}	TVS
5	10A, slow blow	220 μF	470 μF	SMDJ6.0A
12			220 μF	SMDJ14A
15			100 μF	SMDJ17A
24			100 μF	SMDJ28A
48			100 μF	SMDJ54A

Note:

*Please pay attention to the ambient temperature of the product when using an external capacitor, increase the electrolytic capacitor values to at least 1.5 times the original parameter if the ambient temperature is low(such as -25°C).

2. EMC solution-recommended circuit

We suggest to use the recommended circuit shown in Fig.2 during product EMC testing and application.

Capacitor	Recommended value	Function
C1	150 μF electrolytic	Meets EFT and surge
C9	47 μF electrolytic	

Fig. 2

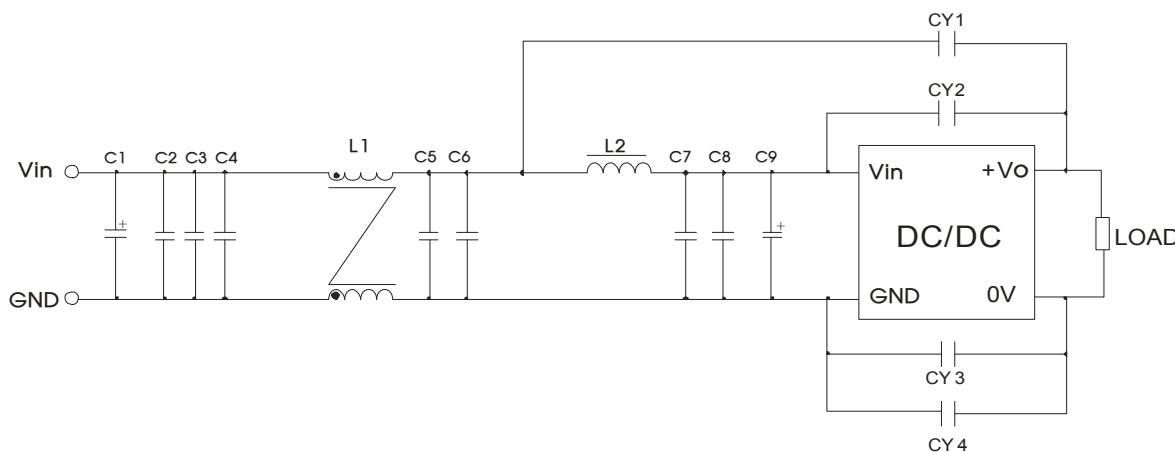
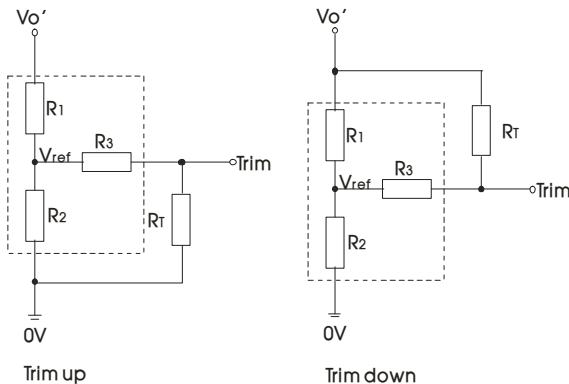



Fig. 3

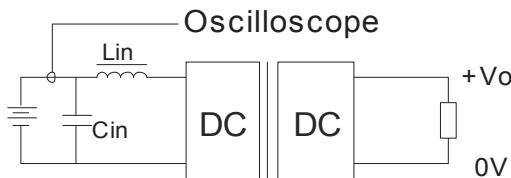
Class A components	Class B components	Recommended component value	Meets conducted emission and radiated emission
C1		150 μ F electrolytic capacitor	
C9		47 μ F electrolytic capacitor	
C1		150 μ F electrolytic capacitor	
C9		47 μ F electrolytic capacitor	
C2, C3, C4, C5, C6, C7, C8		2.2 μ F ceramic capacitor	
L1		1.0mH common mode inductor	
L2		1.5 μ H inductance	
CY3	CY1, CY2, CY3, CY4	1nF Y1 safety capacitor	

3. Trim Function for Output Voltage Adjustment (open if unused)

Calculation formula of Trim resistance:

$$\text{up: } R_T = \frac{\alpha R_2}{R_2 - \alpha} - R_3 \quad \alpha = \frac{V_{ref}}{V_{o'} - V_{ref}} \cdot R_1$$

$$\text{down: } R_T = \frac{\alpha R_1}{R_1 - \alpha} - R_3 \quad \alpha = \frac{V_{o'} - V_{ref}}{V_{ref}} \cdot R_2$$

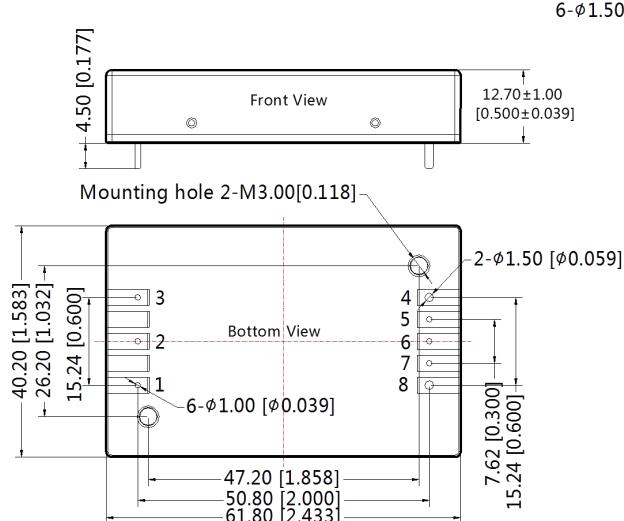

R_T = Trim Resistor value; α = self-defined parameter
 $V_{o'}$ = desired output voltage ($\pm 10\%$ max.)

TRIM resistor connection (dashed line shows internal resistor network)

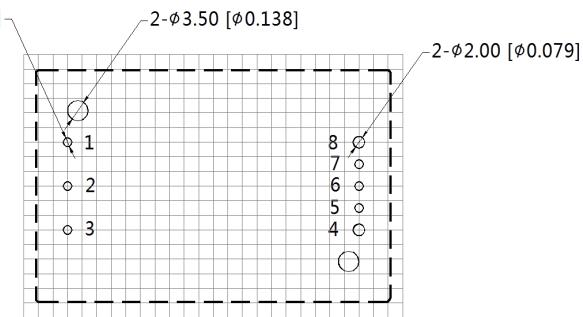
Vout(VDC)	R1(K Ω)	R2(K Ω)	R3(K Ω)	Vref(V)
5	3.036	3	10	2.5
12	11.00	2.87	15	2.5
15	14.03	2.8	15	2.5
24	24.872	2.87	15	2.5
48	53.017	2.913	15	2.5

Note: If the Trim pin is shorted with "+Vo", or its value is too low, then the output voltage $V_{o'}$ would be lower than 0.95 V_o , which may cause permanent damage.

4. Reflected ripple current-test circuit



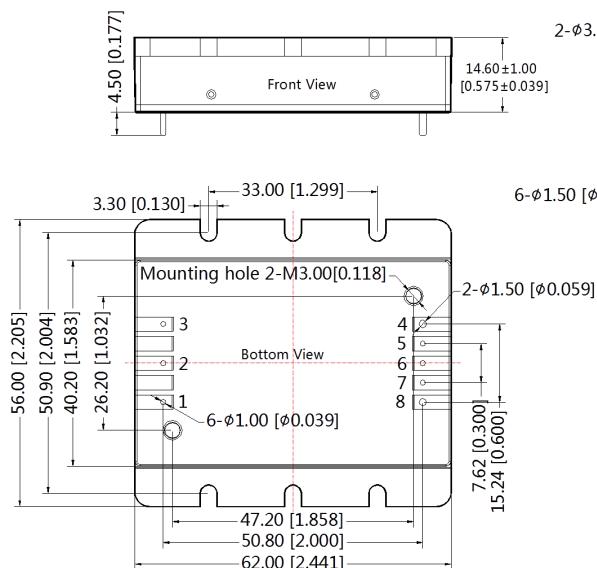
Note: Lin(4.7 μ H), Cin (220 μ F, ESR < 1.0 Ω at 100 KHz)


- The products do not support parallel connection of their output
- Ensure input current meet start-up current of the products, ensuring that the product is not underpower
- For additional information please refer to application notes on www.mornsun-power.com

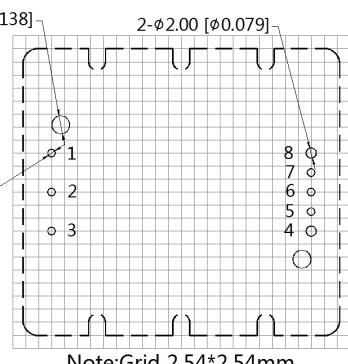
URF48xxQB-75WR3 Dimensions and Recommended Layout

THIRD ANGLE PROJECTION

Note:
Unit: mm[inch]
Pin1, 2, 3, 5, 6, 7's diameter: 1.00[0.039]
Pin4, 8's diameter: 1.50[0.059]
Pin diameter tolerances: ±0.10[±0.004]
General tolerances: ±0.50[±0.020]
Mounting hole screwing torque: Max 0.4 N·m



Note:Grid 2.54*2.54mm

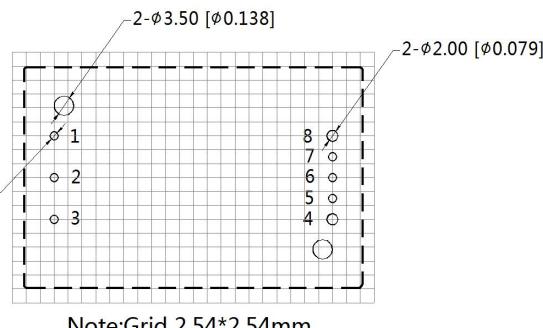

Pin-Out			
Pin	Function	Pin	Function
1	+Vin	5	Sense-
2	Ctrl	6	Trim
3	-Vin	7	Sense+
4	0V	8	+Vo

URF48xxQB-75WFR3 Dimensions and Recommended Layout

THIRD ANGLE PROJECTION

Note:
Unit: mm[inch]
Pin1, 2, 3, 5, 6, 7's diameter: 1.00[0.039]
Pin4, 8's diameter: 1.50[0.059]
Pin diameter tolerances: ±0.10[±0.004]
General tolerances: ±0.50[±0.020]
Mounting hole screwing torque: Max 0.4 N·m

Note:Grid 2.54*2.54mm


Pin-Out			
Pin	Function	Pin	Function
1	+Vin	5	Sense-
2	Ctrl	6	Trim
3	-Vin	7	Sense+
4	0V	8	+Vo

URF48xxQB-75WHR3 Dimensions and Recommended Layout

THIRD ANGLE PROJECTION

Note:
Unit: mm[inch]
Pin1, 2, 3, 5, 6, 7's diameter: 1.00[0.039]
Pin4, 8's diameter: 1.50[0.059]
Pin diameter tolerances: ±0.10[±0.004]
General tolerances: ±0.50[±0.020]
Mounting hole screwing torque: Max 0.4 N·m

Pin-Out			
Pin	Function	Pin	Function
1	+Vin	5	Sense-
2	Ctrl	6	Trim
3	-Vin	7	Sense+
4	0V	8	+Vo

Note:

1. For additional information on Product Packaging please refer to www.mornsun-power.com. Packaging bag number: 58010113(URF48xxQB-75WR3), 58200069(URF48xxQB-75WFR3), 58220017(URF48xxQB-75WHR3);
2. The maximum capacitive load offered were tested at input voltage range and full load;
3. Unless otherwise specified, data in this datasheet should be tested under the conditions of $T_a=25^{\circ}\text{C}$, humidity<75%RH with nominal input voltage and rated load;
4. All index testing methods in this datasheet are based on our company corporate standards;
5. We can provide product customization service, please contact our technicians directly for specific information;
6. Products are related to laws and regulations: see "Features" and "EMC";
7. Our products shall be classified according to ISO14001 and related environmental laws and regulations, and shall be handled by qualified units.

Mornsun Guangzhou Science & Technology Co., Ltd.

Address: No. 5, Kehui St. 1, Kehui Development Center, Science Ave., Guangzhou Science City, Huangpu District, Guangzhou, P. R. China

Tel: 86-20-38601850

Fax: 86-20-38601272

E-mail:info@mornsun.cn

www.mornsun-power.com