

50W isolated DC-DC converter
Ultra-wide input and regulated single output

Patent Protection RoHS

FEATURES

- Ultra-wide input voltage range: 43-160VDC
- High efficiency up to 89%
- Low no-load power consumption
- Reinforced insulation, input - output isolation test voltage: 3k VAC, input - case isolation test voltage: 2.1k VAC
- Operating ambient temperature range: -40°C to +105°C
- Input under-voltage protection, output short-circuit, over-current, over-voltage, over-temperature protection
- Industry standard 1/4 brick
- Meets EN50155 railway standard

URF1D_QB-50WR3 series is a high-performance product specifically designed for a variety of railway applications. The DC-DC converters feature 50W output power with no requirement for minimum load, wide input voltage from 43-160VDC, and allowing operating out-case temperature as high as 105°C. The products also provide input under-voltage protection, output over-voltage, short-circuit and over-temperature protection. Additional functions include remote On/Off control, remote sense compensation and output voltage trim adjustment. Meets railway of EN50155 standard and they are widely used in railway systems and associated equipment.

Selection Guide

Part No. ^①	Input Voltage (VDC)		Output		Full Load Efficiency (%) Min./Typ.	Max. Capacitive Load(μF)
	Nominal (Range)	Max. ^②	Voltage (VDC)	Current (mA) Max./Min.		
URF1D03QB-50W(H)R3	110 (43-160)	170	3.3	11364/0	84/86	20000
URF1D05QB-50W(H)R3			5	10000/0	85/87	10000
URF1D12QB-50W(H)R3			12	4167/0	86/88	3000
URF1D15QB-50W(H)R3			15	3333/0	86/88	2350
URF1D24QB-50W(H)R3			24	2083/0	87/89	1500
URF1D48QB-50W(H)R3			48	1041/0	85/87	240

Note: ① Use "H" suffix for heat sink mounting. We recommend to choose modules with a heat sink for enhanced heat dissipation and applications with extreme temperature requirements;

② Exceeding the maximum input voltage may cause permanent damage.

Input Specifications

Item	Operating Conditions	Min.	Typ.	Max.	Unit
Input Current (full load / no-load)	Nominal input voltage	3.3VDC output	--	397/10	406/20
		24VDC output	--	511/10	523/20
		12VDC, 15VDC output	--	517/10	529/20
		05VDC, 48VDC output	--	523/10	535/20
Reflected Ripple Current	Nominal input voltage	--	50	--	
Surge Voltage (1sec. max.)		-0.7	--	180	
Start-up Voltage		--	--	43	
Under-voltage Protection		--	40	--	
Input Filter		Pi filter			
Hot Plug		Unavailable			
Ctrl*	Module on	Ctrl pin open or pulled high (3.5-12VDC)			
	Module off	Ctrl pin -Vin or pulled low (0-1.2VDC)			
	Input current when off	--	2	10	mA

Note: *The Ctrl pin voltage is referenced to input -Vin.

Output Specifications

Item	Operating Conditions		Min.	Typ.	Max.	Unit
Voltage Accuracy	Nominal input voltage, 0%-100% load	3.3VDC, 5VDC output	--	±1	±3	%
Linear Regulation		Input voltage variation from low to high at full load	--	--	±0.5	
		Others	--	±0.1	±0.3	
Load Regulation	Nominal input voltage, 10%-100% load	3.3VDC, 5VDC output	--	±0.5	±1.0	
		Others	--	±0.3	±0.5	
Transient Recovery Time	25% load step change		--	200	500	μs
Transient Response Deviation		3.3VDC, 5VDC output	--	±6	±9	%
		Others	--	±3	±5	
Temperature Coefficient	Full load		--	--	±0.03	%/°C
Ripple & Noise *	20MHz bandwidth, 10%Io-100%Io load	48VDC output	--	200	300	mVp-p
		Others	--	100	200	
Trim			90	--	110	%
Output Voltage Remote Compensation(sense)			--	--	105	
Over-voltage Protection	Input voltage range	3.3VDC, 5VDC output	110	--	160	%Vo
		Others	110	--	140	
Over-current Protection			110	140	190	%Io
Short-circuit Protection	Input voltage range		Hiccup, continuous, self-recovery			

Note: *Ripple & Noise for 48VDC output at 0%Io-100%Io load ≤ 400mV, others outputs at 0%Io-100%Io load ≤ 300mV, the measuring method of ripple and noise, please refer to Fig. 1.

General Specifications

Item	Operating Conditions		Min.	Typ.	Max.	Unit
Isolation	Input-output	Electric Strength test for 1 minute with a leakage current of 5mA max.	3000	--	--	VAC
	Input-case		2100	--	--	
	Output-case	Electric Strength test for 1 minute with a leakage current of 1mA max.	1500	--	--	VDC
Insulation Resistance	Input-output resistance at 500VDC		1000	--	--	MΩ
Isolation Capacitance	Input-output capacitance at 100KHz/0.1V		--	2200	--	pF
Switching Frequency	PFM mode		--	170	--	KHz
MTBF	MIL-HDBK-217F@25°C		500	--	--	K hours

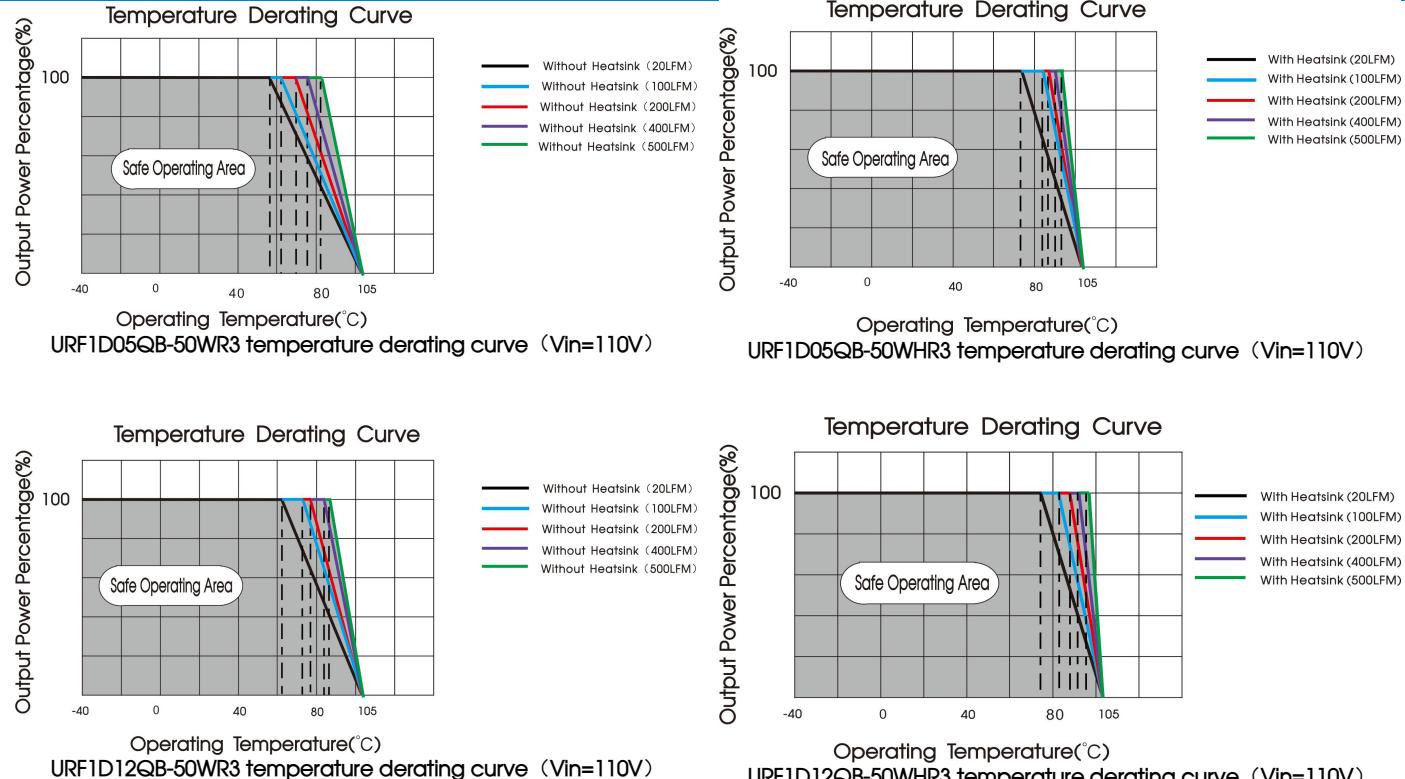
Environmental Specifications

Item	Operating Conditions		Min.	Typ.	Max.	Unit
Operating Temperature Range	See temperature derating curves		-40	--	+105	°C
Over-temperature Protection	Out-case temperature		--	--	+115	
Storage Humidity	Non-condensing		5	--	95	%RH
Storage Temperature			-55	--	+125	°C
Pin Soldering Resistance Temperature	Soldering spot is 1.5mm away from case for 10 seconds		--	--	+300	
Cooling Test	EN60068-2-1					
Dry Heat	EN60068-2-2					
Damp Heat	EN60068-2-30					
Shock and Vibration Test	IEC/EN61373 - Category 1, Grade B					

Mechanical Specifications

Case Material	Aluminum alloy case; Black plastic bottom, flame-retardant and heat-resistant (UL94 V-0)		
Dimensions	Without heatsink	60.80 x 39.20 x 12.70mm	
	With heatsink	60.80 x 39.20 x 27.80mm	
Weight	Without heatsink	78.0g(Typ.)	
	With heatsink	109.0g(Typ.)	
Cooling Method	Free air convection or forced convection		

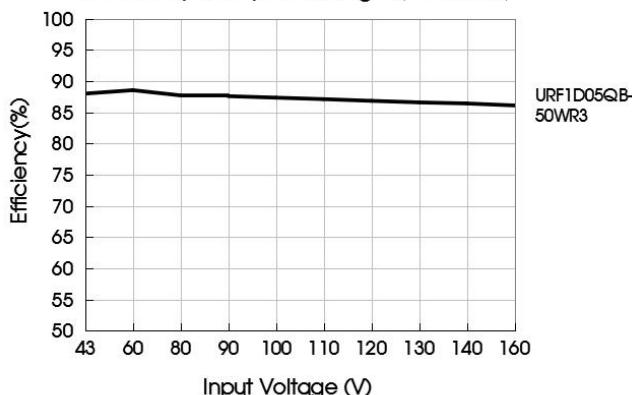
Electromagnetic Compatibility (EMC)

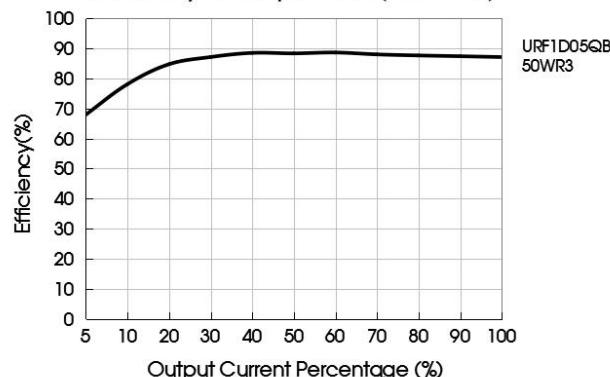

Emissions	CE	CISPR32/EN55032	150KHz-30MHz	Class B (see Fig. 3 for recommended circuit)
	RE*	CISPR32/EN55032	30MHz-1GHz	Class B (see Fig. 3 for recommended circuit)
Immunity	ESD	IEC/EN61000-4-2	GB/T17626.2	Contact $\pm 6\text{KV}$, Air $\pm 8\text{KV}$
	RS	IEC/EN61000-4-3	GB/T17626.3	20V/m
	CS	IEC/EN61000-4-6	GB/T17626.6	10V.r.m.s
	EFT	IEC/EN61000-4-4	GB/T17626.4	$\pm 2\text{KV}$ (5KHz, 100KHz) (see Fig. 3 for recommended circuit)
	Surge	IEC/EN61000-4-5	GB/T17626.5	line to line $\pm 2\text{KV}$ ($1.2 \mu\text{s}/50 \mu\text{s} 2\Omega$) (see Fig. 3 for recommended circuit)
				perf.Criteria A

Note: *The standard only suit for URF1D_QB-50WR3 series (without heatsink).

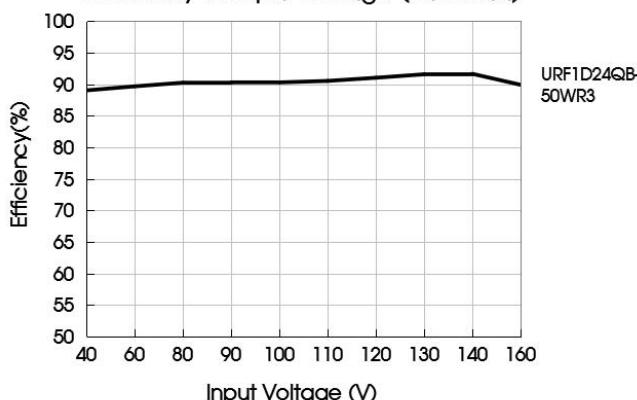
Electromagnetic Compatibility (EMC) (EN50155)

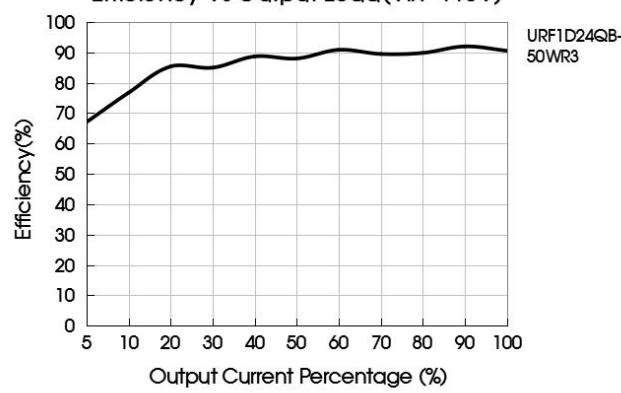
Emissions	CE	EN50121-3-2	150kHz-500kHz	99dBuV (see Fig. 2 for recommended circuit)
	RE	EN50121-2-1	500kHz-30MHz	93dBuV (see Fig. 2 for recommended circuit)
Immunity	ESD	EN50121-3-2	30MHz-230MHz	40dBuV/m at 10m (see Fig. 2 for recommended circuit)
	RS	EN50121-3-2	230MHz-1GHz	47dBuV/m at 10m (see Fig. 2 for recommended circuit)
	EFT	EN50121-3-2	$\pm 2\text{KV}$ 5/50ns	5kHz (see Fig. 2 for recommended circuit)
	Surge	EN50121-3-2	line to line $\pm 1\text{KV}$ (42Ω , $0.5 \mu\text{F}$)	(see Fig. 2 for recommended circuit)
	CS	EN50121-3-2	0.15MHz-80MHz	10V r.m.s
				perf. Criteria A


Typical Characteristic Curves

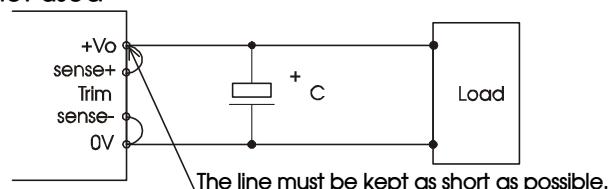

Notes:

1. Temperature derating curves and efficiency curves are typical test values.
2. Temperature derating curve in accordance with our laboratory test conditions for testing, the actual use of environmental conditions if the customer is not consistent, to ensure that the product aluminum shell temperature does not exceed 100 °C, can be used within any rated load range.


Efficiency Vs Input Voltage (Full Load)

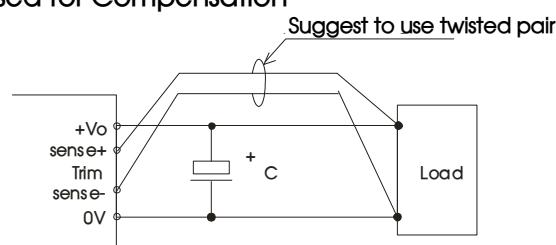

Efficiency Vs Output Load(Vin=110V)

Efficiency Vs Input Voltage (Full Load)



Efficiency Vs Output Load(Vin=110V)

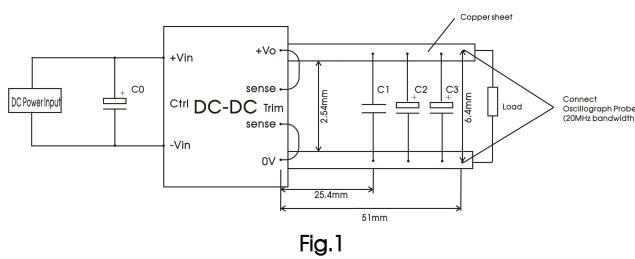
Remote Sense Application


1. Remote Sense Connection if not used

Notes:

- (1) If the sense function is not used for remote regulation the user must connect the +Sense to + Vo and -Sense to 0V at the DC-DC converter pins and will compensate for voltage drop across pins only.
- (2) The connections between Sense lines and their respective power lines must be kept as short as possible, otherwise they may be picking up noise, interference and/or causing unstable operation of the power module.

2. Remote Sense Connection used for Compensation


Notes:

- (1) Using remote sense with long wires may cause unstable output, please contact technical support if long wires must be used.
- (2) PCB-tracks or cables/wires for Remote Sense must be kept as short as possible. Twisted pair or shielded wires are suggested for remote compensation and must be kept as short as possible.
- (3) We recommend using adequate cross section for PCB-track layout and/or cables to connect the power supply module to the load in order to keep the voltage drop below 0.3V and to make sure the power supply's output voltage remains within the specified range.
- (4) Note that large wire impedance may cause oscillation of the output voltage and/or increased ripple. Consult technical support or factory for further advice of sense operation.

Design Reference

1. Ripple & Noise

All the DC-DC converters of this series are tested before delivery using the recommended circuit shown in Fig. 1.

Capacitors value	C0(μF)	C1(μF)	C2(μF)	C3(μF)
Output voltage				
3.3VDC				1000
5VDC				680
12VDC	100			
15VDC		1		
24VDC			10	
48VDC				220

2. Typical application

We recommended using Mornsun's EMC circuit, otherwise please ensure that at least a 100μF electrolytic capacitors is connected at the input in order to ensure adequate voltage surge suppression and protection.

Input and/or output ripple can be further reduced by appropriately increasing the input & output capacitor values Cin and Cout and/or by selecting capacitors with a low ESR (equivalent series resistance). Also make sure that the capacitance is not exceeding the specified max. capacitive load value of the product.

Capacitors value	Cout(μF)	Cin(μF)
Output voltage		
3.3VDC	1000	
5VDC	680	
12VDC		
15VDC		
24VDC	220	
48VDC		100

3. EMC compliance recommended circuit

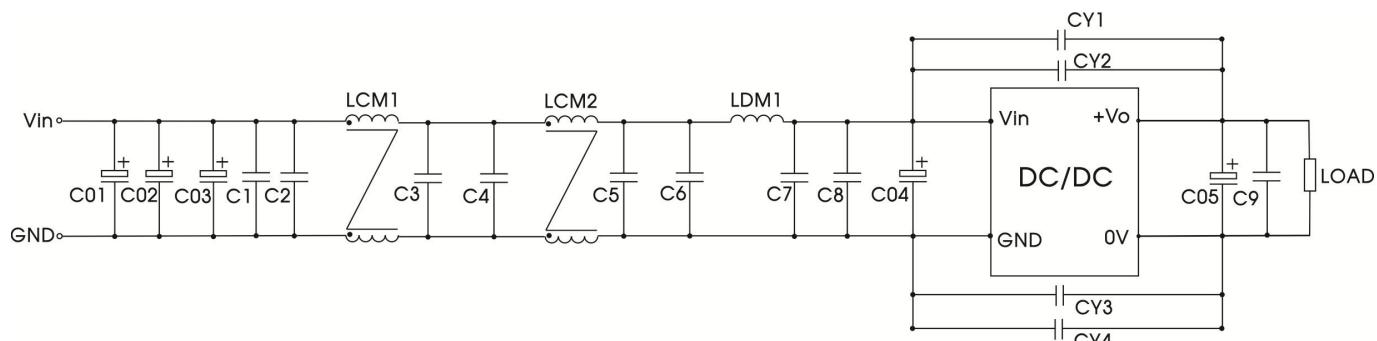


Fig.2

C01, C02, C03, C04	220uF/200V (electrolytic capacitor)
C05	220uF/63V (electrolytic capacitor)
LDM1	1.5uH (Shielded inductor)
C1, C2, C3, C4, C5, C6, C7, C8, C9	2.2uF/250V
CY1, CY2, CY3, CY4	2200 pF /400VAC (Y safety capacitor)
LCM1	FL2D-30-472
LCM2	FL2D-30-102

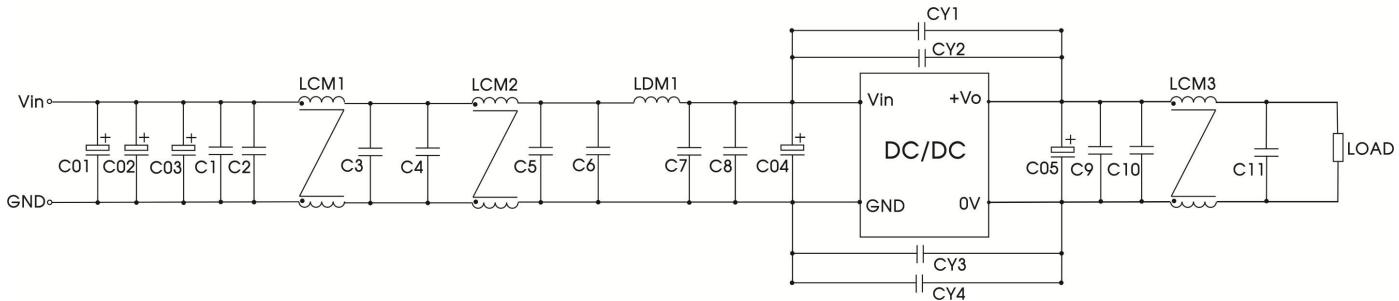
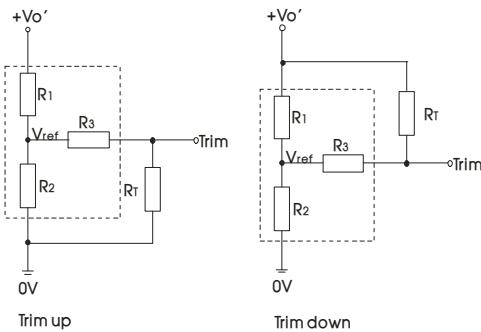



Fig.3

C01, C02, C03, C04	220uF/200V (electrolytic capacitor)
C05	220uF/63V (electrolytic capacitor)
LDM1	1.5uH (Shielded inductor)
C1, C2, C3, C4, C5, C6, C7, C8, C9, C10, C11	2.2uF/250V
CY1, CY2, CY3, CY4	2200 pF /400VAC (Y safety capacitor)
LCM1	FL2D-30-472
LCM2	FL2D-30-102
LCM3	TDG TN100B ϕ 5X5 0.9mm

4. Trim Function for Output Voltage Adjustment (open if unused)

TRIM resistor connection (dashed line shows internal resistor network)

Trim resistor calculation:

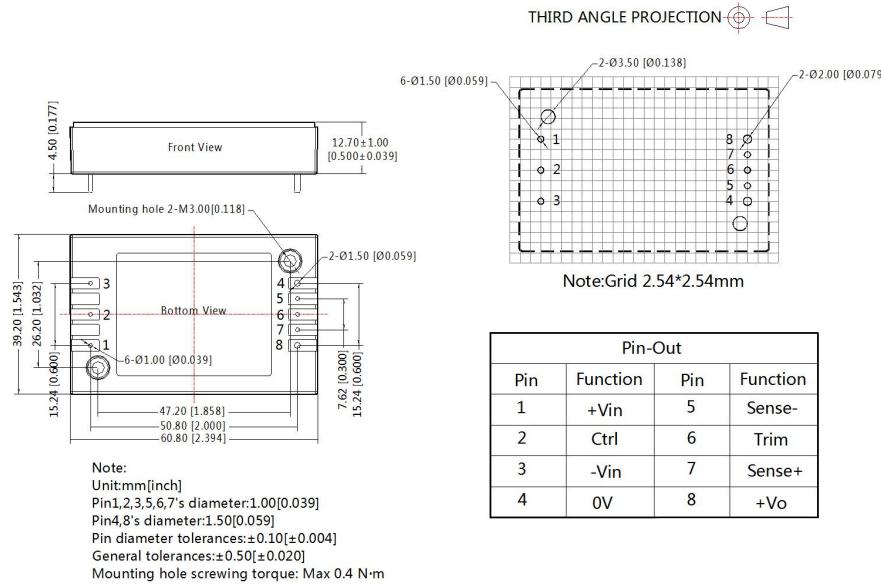
$$\text{up: } R_T = \frac{\alpha R_2}{R_2 - \alpha} - R_3 \quad \alpha = \frac{V_{ref}}{V_{o'} - V_{ref}} \cdot R_1$$

$$\text{down: } R_T = \frac{\alpha R_1}{R_1 - \alpha} - R_3 \quad \alpha = \frac{V_{o'} - V_{ref}}{V_{ref}} \cdot R_2$$

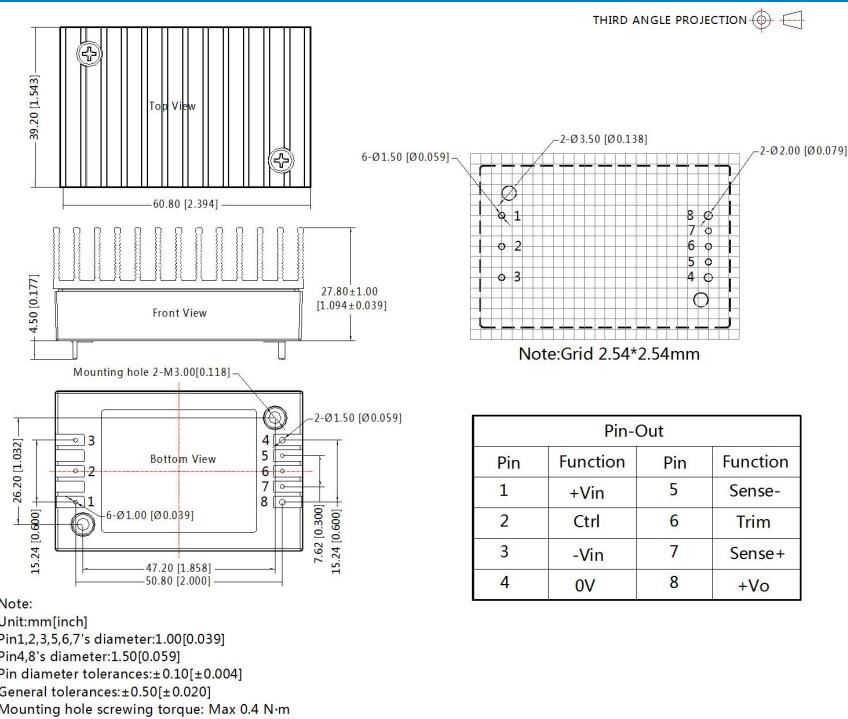
table 1

V_o resistance	3.3(VDC)	5(VDC)	12(VDC)	15(VDC)	24(VDC)	48(VDC)
$R_1(K\Omega)$	4.83	8.80	11	14.49	24.87	58.7
$R_2(K\Omega)$	2.87	2.87	2.87	2.87	2.87	3.21
$R_3(K\Omega)$	9.66	11	11	16	21	11
$V_{ref}(V)$	1.24	1.24	2.5	2.5	2.5	2.5

Note:


For R_1 , R_2 , R_3 and V_{ref} values refer to table 1. R_T = Trim Resistor value; α = self-defined parameter $V_{o'} =$ desired output voltage

5. The products do not support parallel connection of their output


6. For additional information please refer to DC-DC converter application notes on

www.mornsun-power.com

URF1D_QB-50WR3 Dimensions (without heatsink)

URF1D_QB-50WHR3 Dimensions (with heatsink)

Note:

1. For additional information on Product Packaging please refer to www.mornsun-power.com. The Packaging bag number of Horizontal packaging: 58010113(without heatsink), 58220017(with heatsink);
2. Recommend to use module with more than 5% load, If not, the ripple of the product may exceeds the specification, but does not affect the reliability of the product;
3. The maximum capacitive load offered were tested at input voltage range and full load;
4. It is suggested to take our recommended circuit for EMC testing. If the customer needs to meet the performance of the surge and without taking recommended solution of ours, please make sure the residual voltage of surge less than 180V;
5. It is suggested that customers use enamel film or thermal grease between the heat sink and the module when using the heat sink to ensure good heat dissipation;
6. Unless otherwise specified, data in this datasheet should be tested under the conditions of $T_a=25^{\circ}\text{C}$, humidity<75%RH with nominal input voltage and rated load;
7. All index testing methods in this datasheet are based on company corporate standards;
8. We provide product customization service and match filter module, please directly contact our technicians for specific information;
9. Products are related to laws and regulations: see "Features" and "EMC";
10. Our products shall be classified according to ISO14001 and related environmental laws and regulations, and shall be handled by qualified units.

Mornsun Guangzhou Science & Technology Co., Ltd.

Address: No. 5, Kehui St. 1, Kehui Development Center, Science Ave., Guangzhou Science City, Huangpu District, Guangzhou, P. R. China

Tel: 86-20-38601850

Fax: 86-20-38601272

E-mail: info@mornsun.cn

www.mornsun-power.com